Sweating the small stuff---the influence of metabolite extraction and separation on metabolomic studies

Andrew D. Patterson, PhD Associate Professor of Molecular Toxicology Penn State University adp117@psu.edu

Resources

Metabolomics Workbench

www.metabolomicsworkbench.org

• XCMS Institute

 Great tutorials on chromatography, platforms, databases

• Twitter

References

Mass spectrometry-based metabolomics

Xenobiotic metabolomics: major impact on the metabolome

The intestinal metabolome: an intersection between microbiota and host

"What have we here? A man or a fish? Dead or alive? He smells like a fish; a very ancient and fish-like smell . . ." W. Shakespeare The Tempest

GENOME FMO3 Mutation

FISHY EGGS

PROTEOME METABOLOME

USE METABOLITE CHANGES TO INFORM ABOUT MECHANISM

Metabolomics

- Metabolomics is the systematic analysis of the unique chemical fingerprints left behind by specific cellular processes
 - These small molecule metabolite profiles provide insight into cellular status.
- All "-omics" based scientific disciplines aim at the collective characterization and measurement of their particular constituent molecules
 - A comprehensive approach to study complete pools of biological molecules
 - Defines the structure, function and dynamics of an organism.
- Vast chemical diversity among small molecule metabolites has made extended coverage of the metabolome challenging
 - Size (50 1500 Da)
 - Concentration (pM mM)
 - Physicochemical properties (diverse log P values)
 - Stereochemistry (distinct biological activity)

Metabolite Extraction

- Currently no analytical technique exists that is capable of *in-situ* measurement of all classes of cellular metabolites
- Metabolite extraction therefore becomes a crucial step in any type of metabolomics study
 - Critical to both targeted and global based profiling strategies.
- Optimized extraction methodology should fulfill several criteria:
 - Extract the largest number of metabolites
 - Unbiased and non-selective physical or chemical properties of a molecule
 - Non-destructive no modification of metabolites

Separation of Metabolites

- Mass spectrometry usually requires some form of chromatographic separation
 - Most systems use either liquid or gas chromatography
 - CE-MS gaining popularity
- Fractionation of sample components simplifies the resulting mass spectra while ensuring more accurate compound identification
 - Capacity factor (k) is critical to optimizing resolution
 - Increased resolution allows longer MS dwell times resulting in better signal/noise ratios
- Inadequate chromatographic separation of metabolites results in:
 - signal suppression ion suppression
 - compromised metabolite quantification
 - reduced metabolite coverage

Metabolite Class Bile Acids - general	Separation Mode RPLC	Stationar Waters B	Phenomenex Luna NH2 silica will break down over time at	.01%)
Bile Acids - MCA isomers	RPIC	Waters B	high pH thus reducing column life, reducing	.01%)
Bile Waters Amide column used for HILIC will rapidly and dramatically clog with salt over time unless flushed extensively at the end of each run with methanol/isopropanol/water.		Restek Rapto	resolving power, and dirtying the source.	
		Waters B Waters CSF		.01%) 1 (0.01%)
		Waters BE		ate (pH=10.0)
		Waters (e (pH=10.0)
م		Waters BE	Thermo Hypercarb is robust,	e (pH=10.0)
Eicosanoids	RPLC	Waters B	provides excellent	.01%)
Keto-prostaglandins	RPLC	Waters B	separation, but is extremely sticky.	.01%)
Nucleotides	HILIC	Waters BE		e (pH=9.0)
Nucleotides	HILIC	Waters BE		te (pH=9.0)
		Thermo - Hyp	ercarb	
Nucleotides - NAD(P)+/NAD(P)H	RPLC	graphit	e acetonitrile/water/ammoniun	n acetate

Hypothesis

Extraction and separation of metabolites may influence metabolomic studies as much as the disease process being investigated

Rationale

Developing optimized protocols for extraction efficiency and chromatographic resolution based on metabolite class and/or characteristics will dramatically improve accuracy and reproducibility of metabolomic data sets.

aqueous phase

Definitions

- Isomer same chemical formula, different chemical structure
- Stereoisomer same chemical formula, same order/sequence of bonded atoms, different 3dimensional orientation
- Isobar same mass, but different chemical formula

Resolution of Bile Acid Metabolites by RPLC using Waters BEH C18

Resolution of Taurine Conjugated MCA Isomers by RPLC on WATERS BEH C18

Resolution of Taurine Conjugated MCA Isomers by RPLC on Restek Rapture Biphenyl

Resolution of Taurine Conjugated MCA Isomers by RPLC on Restek Ultra AQ C18

Tauro-β-Muricholic Acid An Typical Isomer Example in Metabolomics

TβMCA is an Farnesoid X Receptor Antagonist

Shp (FXR target gene) induction in hepatocytes

Sayin et al *Cell Metabolism* 2013

Li F et al *Nature Communications* 2013

METABOLOMICS FOR UNDERSTANDING DRUG TOXICITY---ACETAMINOPHEN

Bernard Brodie 1908-1989

ACETAMINOPHEN-INDUCED HEPATIC NECROSIS. I. ROLE OF DRUG METABOLISM'

J. R. MITCHELL, D. J. JOLLOW, W. Z. POTTER,"" D. C. DAVIS," J. R. GILLETTE AND B. B. BRODIE

Laboratory of Chemical Pharmacology, National Heart and Luny Institute, National Institutor of Health, Betherda, Maryland

ACETAMINOPHEN-INDUCED HEPATIC NECROSIS. II. ROLE OF COVALENT BINDING IN VIVO'

D. J. JOLLOW, J. R. MITCHELL, W. Z. POTTER, "* D. C. DAVIS, J. R. GILLETTE AND B. B. BRODIE

Laboratory of Chemical Pharmacology, National Heart and Lung Institute, National Institutes of Health, Betheoda, Maryland

ACETAMINOPHEN-INDUCED HEPATIC NECROSIS. J11. CYTOCHROME P-450-MEDIATED COVALENT BINDING IN VITRO'

W. Z. POTTER,"" D. C. DAVIS," J. R. MITCHELL, D. J. JOLLOW, J. R. GILLETTE AND B. B. BRODIE

Laboratory of Chemical Pharmacology, National Heart and Lung Institute, National Institutes of Health, Bethesda, Meryland

ACETAMINOPHEN-INDUCED HEPATIC NECROSIS. IV. PROTECTIVE ROLE OF GLUTATHIONE'

J. R. MITCHELL, D. J. JOLLOW, W. Z. POTTER, J. R. GILLETTE AND B. B. BRODIE

Laboratory of Chemical Pharmacology, National Heart and Lung Institute, National Institutes of Health, Betherda, Maryland

APAP NAPQI Toxicity

N-acetyl-p-benzoquinone imine

NORMAL MOUSE LIVER

NECROTIC MOUSE LIVER (400 mg/kg APAP 6 HOURS)

- Contained in 100s of products
- One of the most common pharmaceuticals associated with accidental and intentional poisoning (>7 g per adult per day)
- APAP overdose serves as a model for drug-induced liver toxicity
- Excess NAPQI (with reduced glutathione levels) leads to oxidative damage and inflammation leading to hepatocellular death/necrosis

Acetaminophen Metabolomics

Mouse Urinary Proteins (MUPs)

Dilute equal volume of mouse urine with an equal volume of 50% methanol

Mouse Urinary Proteins

• Dilute equal volume of mouse urine with an equal volume of 100% methanol

APAP Metabolism Study #4 Score Scatter Plot

PCA model

APAP Metabolism Loading Scatter Plot

PCA Model

X-Variable Trend Plot for L-Carnitine (m/z=162.114+)

X-Variable Trend Plot for Propionylcarnitine (m/z=218.14+)

X-Variable Trend Plot for Acetylcarnitine (m/z=204.124+)

X-Variable Trend Plot for Decanoylcarnitine (m/z=316.247+)

INFLUENCE OF EXTRACTION PROTOCOL – Carnitines and CoAs

CONTROL

Influence of pH on Metabolite Extraction from Mouse Liver

Influence of pH on Metabolite Extraction from Mouse Liver

Influence of pH on Metabolite Extraction from Mouse Liver

Extraction Efficiency of L-Carnitine from Mouse Liver

Matrix Effects and Extraction

LIVER 8·10⁶ 2.0.10 n-butanol IPA pH 4 6 · 10 ⁵ 1.5.10 IPA pH 8 MeOH:Water pH 4 area eakarea MeOH:Water pH 8 4·10 1.0.10 peak 2.10 5.0.10 C 0 C 2 C 3 C3:1 C 3 - O H C 4 C 4 - O H C4:1

SERUM

CARNITINES CO – C5

Matrix Effects and Extraction

LIVER

SERUM

CARNITINES C10 – C14

Resolution of Acyl Carnitine Standards by RPLC on Waters BEH C18

Acylcarnitine Extraction in Acidified IPA

Increasing Chain Length

Resolution of Coenzyme A (CoA) Thioester Metabolites by RPLC using Waters BEH C18

131120_	CC_acylCoA	_240																					19: MRM of	4 Channels	ES+
¹⁰⁰]																			18.95			10	132.775 > 428.	2.0 2.0	07e6
*																									
0																			\square						
-0.00) 1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24	.00 25.00) 594
100-		_201																1	18.66			1030	1.755 > 428.35	9 (Lineleoyl (COA
																			1					1.3	35e <i>i</i>
~]						
-0.00) 1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24	.00 25.00	0
131120_	CC_acylCoA	_239																40.47				079	16: MRM of	4 Channels	ES+
¹⁰⁰]																		18.17				970	.109 / 420.34	8.3	31e6
*																									
0					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																				
-0.00 131120 () 1.00 CC acviCoA	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24	.00 25.00 4 Channels	0 ES+
100-																	17.3	5				9	50.734 > 428.3	59 (Lauroyl (CoA)
<u></u>																								1.0	5007
Î																									
-0.00) 1.00	2.00	3.00	4.00	5.00	6.00	7.00	<mark>8.00</mark>	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24	.00 25.00	0
131120_	CC_acylCoA	_234													1	5 63						922	13: MRM of 665 > 415.552	4 Channels 2 (Decanovi (ES+ CoA
100																Ň								9.8	87e7
*																1									
0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		1.1.1				<u> </u>									
-0.00 _131120_	CC_acylCoA	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24 12: MRM of	4 Channels	J ES+
1007												11.93										894	.571 > 428.295	5 (Octanoyl C 5.	CoA) 14e7
~												A													
												Л													
-0.00) 1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00	21.00	22.00	23.00 24	.00 25.00	0
131120_0	CC_acylCoA	_232						7.65														866	10: MRM of 574 > 428.36	4 Channels 8 (Hexanoyl (ES+ CoA
100								Å.																1.9	97e7
*																									
0	1.00	2.00	3.00	4.00	5.00	6.00	7.00	/\ 8.00	9.00	10.00	11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	10.00	20.00	21.00	22.00	23.00 24	T	ime
-0.00	1.00	2.00	0.00	4.00	0.00	0.00	1.00	0.00	5.00	10.00	11.00	12.00	10.00	14.00	10.00	10.00	17.00	10.00	19.00	20.00	21.00	22.00	20.00 24	.00 20.00	J

1311:	20_CC_acylCoA_241										11: MRM of	4 Channels ES-
100 ∎ ಕ			5.69								886.574 > 428.358 (P	henylacetyl CoA 1.05e
0 1311: 100 %	4 0.00 2.00 20_CC_acylCoA_231	4.00 8.52	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24 6: MRM of 838.588 > 428.	4.00 4 Channels ES- 415 (Butyri CoA 1.60e
0 بار 1311: 100 چ	20_00 2.00 20_CC_acyICoA_235 3.3	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24 7: MRM of 838.588 > 428.415	4.00 4 Channels ES- i (Isobutyryl CoA 1.65e
0 با 1311: 100 ځ	20_00 2.00 20_CC_acylCoA_244 2.77	4.00	6.00	8.00	10.00	12.00	14.00	16 <u>.</u> 00	18.00	20.00	22.00 24 5: MRM of 836.514 > 428.291 (4.00 4 Channels ES- (2-butenoyl CoA 1.29e
0 ا- 1311: 100 چ	0.p0 2.00 20_CC_acyiCoA_230 1.98	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24 4: MRM of 824.568 > 428.362	4.00 4 Channels ES+ 2 (Propionyl CoA 1.13e
0 با 1311: 100 کار	20_CC_acyICoA_245 1.84 1.63	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24 1: MRM of 688.454 > 348.428 (3-	4.00 4 Channels ES- dephospho CoA 1.12e
0 با 1311: 100 چ	1,/U\ 0.p0 2.00 20_CC_acyICoA_229 1.53 1.25	4.00	6.00	8.00	10.00	12.00	14.00	16 <u>.</u> 00	18.00	20.00	22.00 24 3: MRM of 810.538 > 428.	4.00 4 Channels ES- 367 (Acetyl CoA 3.66e
0 با 1311: 100 لا	0.p0 2.00 20_CC_acyICoA_228 1.44 1.10	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24 2: MRM of 768.498 > 428.3	4.00 4 Channels ES- 75 (Coenzyme A 2.04e
0 -1	₽ <mark>₽</mark> / <u>·</u> / <u>·</u>	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00 24	1.00

AcylCoa Extraction via Modified Bligh/Dyer

Increasing Chain Length

Chem Res Toxicol. 2009 Apr;22(4):699-707. doi: 10.1021/tx800464q.

Serum metabolomics reveals irreversible inhibition of fatty acid beta-oxidation through the suppression of PPARalpha activation as a contributing mechanism of acetaminophen-induced hepatotoxicity.

Chen C¹, Krausz KW, Shah YM, Idle JR, Gonzalez FJ.

J Biol Chem. 2008 Feb 22;283(8):4543-59. Epub 2007 Dec 19.

Identification of novel toxicity-associated metabolites by metabolomics and mass isotopomer analysis of acetaminophen metabolism in wild-type and Cyp2e1-null mice.

Chen C¹, Krausz KW, Idle JR, Gonzalez FJ.

Hepatology. 2012 Jul;56(1):281-90. doi: 10.1002/hep.25645. Epub 2012 Jun 6.

Peroxisome proliferator-activated receptor alpha induction of uncoupling protein 2 protects against acetaminophen-induced liver toxicity.

Patterson AD¹, Shah YM, Matsubara T, Krausz KW, Gonzalez FJ.

MITOCHONDRIAL DYSFUNCTION

INFLUENCE OF EXTRACTION PROTOCOL – Ceramides

Ceramide Physicochemical Properties

- Ceramides are a family of waxy lipid molecules.
 - Name derived from the latin word: cera = waxy + amide
- Ceramides are comprised of:
 - sphingosine: 18 carbon unsaturated amino alcohol
 - fatty acid moiety amide bond
- Ceramides are not water soluble:
 - Very hydrophobic
 - Confined to cellular membranes
 - Participate in lipid raft formation
 - >200 structurally distinct species have been identified in mammalian cells

Ceramide General Structure

• Ceramide (d18:1/16:0)

- 2-amino-1,3-octadec-4-ene-diol
 - Amino alcohol (sphingoid) backbone
- Palmitic acid
 - Fatty acyl group

- Ceramide (d18:1/24:1(15Z))
- 2-amino-1,3-octadec-4-ene-diol
 - Amino alcohol (sphingoid) backbone
- 15-tetracosenoic acid
 - Fatty acyl group

Ceramide Biochemistry

• Ceramides are found in high concentration in the membrane of cells.

- Structural component of the lipid bilayer
- Bioactive lipid implicated in a variety of physiological functions including:
 - ✓ Apoptosis and cell growth arrest
 - ✓ differentiation and cell senescence
 - ✓ cell migration and adhesion

• Ceramides are converted rapidly to more complex sphingolipids:

- Sphingomyelin
- Glycosylceramides
- Little accumulation observed
- Except for the skin (50% of total lipids can be ceramides)

Biosynthesis of Ceramides

1. De novo biosynthesis:

- Ceramide synthases couple sphinganine + long chain fatty acid to form dihydroceramide. •
- Double bond introduced into position 4 of the sphingoid base •
 - ceramide synthases 5 and 6 generate are specific for palmitic acid
 - ceramide synthases 1 (brain and skeletal muscle) specific for stearic aid (C18:0 & C18:1 ceramides)
 - ceramide synthases 2 specific for very long chain CoA-thioesters (C₂₀-C₂₆) (C20:0, C22:0, C24:0, C24:1 etc)
 - ceramide synthases 3 unusual ceramides of skin & testes
- 2. Catabolism of complex sphingolipids:
 - Sphingomyelinases/phospholipase C breakdown sphingomyelin in animal tissues •
 - Many factors can stimulate the hydrolysis of sphingomyelin to produce ceramide: •
 - Cytokines :TNF- α , IFN- γ & various interleukins
 - 1,25-dihydroxy-vitamin D_3
 - endotoxin
 - nerve growth factor
 - ionizing radiation & heat

- C16 ceramide

Ceramides and Disease

- Ceramide metabolites have been implicated in various pathological conditions including:
 - Cancer
 - Diabetes
 - Obesity
 - Inflammation
 - Neurodegeneration
- Although not understood, the structure of individual ceramides aids in defining their physiological function.
 - Ceramides containing specific fatty acids are generated in response to particular stimuli.

LC Method Development: Where to Start?

- Designing and optimizing an LC method involves choosing appropriate:
 - 1. Separation mechanism: NPC, RPLC, HILIC, size exclusion ion, exchange etc
 - 2. Column chemistry: C2, C4, C8, C18, cyanopropyl, phenyl, biphenyl, amide, SiOH etc
 - 3. Column properties: pore size, particle size & column dimensions
 - 4. Stationary and mobile phase combinations
- Critical to optimizing the chromatographic efficiency, retention, resolution & selectivity of analytes.

Ceramide Scouting Gradients on Waters BEH C18

Fractionation of Ceramide Metabolites on Waters CSH C18 Column

Fractionation of Ceramide Metabolites on Waters CSH C18 Column

Ceramide Fragmentation Patterns

m/z = 262 or 284

Ceramide Analysis in $CHCI_3$: MeOH Extracted Murine Liver

Conclusions

- Ceramides can be effectively resolved using reverse-phase liquid chromatography (RPLC) methodologies:
 - C18 column chemistry sufficient; but particle properties important (BEH vs CSH)
 - Stronger eluotropic series needed; MeOH or MeCN & water no good
 - Higher column temp required to compensate for increased backpressure (solvent viscosity & increased flow rates)
- Various ceramide metabolites can be detected using multiple UPLC-MS platforms:
 - Global metabolite profiling approach UPLC-ESI-QTOF-MS
 - Targeted metabolite approach UPLC-ESI-MS-MRM
- Poor detection of ceramides from bio-fluids and serum.
 - Low levels of endogenous ceramides?
 - Rapidly converted to more complex sphingolipids?
 - Ineffective extraction method?
 - Matrix effects Ion suppression?

Conclusions

- Extraction protocols can impact metabolomic data sets considerably
- Solvent system composition and pH exhibit the most dramatic effects on metabolite recovery
 - The magnitude of these effects depend on metabolite class
 - Some classes of metabolites
- The number of extraction repetitions also plays a role in enhancing metabolite recovery
 - Tradeoff longer sample prep time
 - Larger sample volumes to process (evaporate)

Conclusions

- Traditional RPLC methods can provide efficient separation of acyl-carnitine, bile acid and CoA thioester mixtures.
 - Advancements in hybrid particle technologies
 - Allowing for extremes in mobile phase pH and temperature manipulate selectivity
 - Complex ligand stationary phase interactions
- HILIC methods are superior at separating highly polar metabolites.
 - Nucleotides and derivatives
 - Small polar metabolites sugars, organic acids, amino acids, hydrophilic vitamins
- Advanced column chemistries (amide, aminopropyl, biphenyl, graphite, phenyl-hexyl) and alternative chromatographic methodologies (HILIC) can provide enhanced coverage of the metabolome.

Future Plans

- There's no one "perfect" extraction or LC method available capable of efficiently resolving all components or features in the metabolome
- Therefore, our goal is to continue to develop optimized extraction and chromatography protocols for various classes of liver metabolites
Acknowledgments

Penn State University

- Chris Chiaro
- Philip Smith
- Jared Correll

MRC

- Julian Griffin
- Elizabeth Stanley

National Cancer Institute

- Frank J. Gonzalez
- Kris Krausz
- Changtao Jiang
- Fei Li
- Curt Harris
- Ewy Mathe
- Majda Haznadar

NIEHS R01 ES022186

Metastars www.metastars.org

